An improved approach for estimating observation and model error parameters in soil moisture data assimilation
نویسندگان
چکیده
[1] The accurate specification of observing and/or modeling error statistics presents a remaining challenge to the successful implementation of many land data assimilation systems. Recent work has developed adaptive filtering approaches that address this issue. However, such approaches possess a number of known weaknesses, including a required assumption of serially uncorrelated error in assimilated observations. Recent validation results for remotely sensed surface soil moisture retrievals call this assumption into question. Here we propose and test an alternative system for tuning a soil moisture data assimilation system, which is robust to the presence of autocorrelated observing error. The approach is based on the application of a triple collocation approach to estimate the error variance of remotely sensed surface soil moisture retrievals. Using this estimate, the variance of assumed modeling perturbations is tuned until normalized filtering innovations have a temporal variance of one. Real data results over three highly instrumented watershed sites in the United States demonstrate that this approach is superior to a classical tuning strategy based on removing the serial autocorrelation in Kalman filtering innovations and nearly as accurate as a calibrated Colored Kalman filter in which autocorrelated observing errors are treated optimally.
منابع مشابه
Soil moisture initialization for climate prediction: Assimilation of scanning multifrequency microwave radiometer soil moisture data into a land surface model
[1] Climate model prediction skill is currently limited in response to poor land surface soil moisture state initialization. However, initial soil moisture state prediction skill can potentially be enhanced by the assimilation of remotely sensed near-surface soil moisture data in off-line simulation. This study is one of the first to evaluate such potential using actual remote sensing data toge...
متن کاملA microwave land data assimilation system: Scheme and preliminary evaluation over China
[1] To make use of satellite microwave observations for estimating soil moisture, a dual‐pass land data assimilation system (DLDAS) is developed in this paper by incorporating a dual‐pass assimilation framework into the Community Land Model version 3 (CLM3). In the DLDAS, the model state (volumetric soil moisture content) and model parameters are jointly optimized using the gridded Advanced Mic...
متن کاملA dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature
[1] To overcome the difficulties in determining the optimal parameters needed for a radiative transfer model (RTM), which acts as the observational operator in a land data assimilation system, we have designed a dual-pass assimilation (DP-En4DVar) framework to optimize the model state (volumetric soil moisture content) and model parameters simultaneously using the gridded Advanced Microwave Sca...
متن کاملRe-thinking Sensitivity of Model Parameter Values in Soil Moisture Assimilation Using the Evolutionary Data Assimilation
The sensitivity of land surface model parameters is usually examined for one parameter at a time in response to changes in observation data and/or the model estimated output. This parameter independence approach assumes that there are limited interactions between model parameters a precondition which is highly unlikely for land surface models. Additionally, the model parameter values are widely...
متن کاملSoil Moisture Initialization for Climate Prediction: Characterization of Model and Observation Errors
Current models for seasonal climate prediction are limited due to poor initialization of the land surface soil moisture states. Passive microwave remote sensing provides quantitative information on soil moisture in a thin near-surface soil layer at large scale. This information can be integrated with a land surface process model through data assimilation to give better prediction of the near su...
متن کامل